Drugs that Affect the Endocrine System

2.1.7

Trevonne M. Thompson, MD

2.1.7 Drugs that affect the endocrine system
2.1.7.1 Antidiabetic drugs
 2.1.7.1.1 Insulin
 2.1.7.1.2 Oral hypoglycemics
 2.1.7.1.2 Others
2.1.7.2 Bone active drugs
2.1.7.3 Electrolytes and minerals
2.1.7.4 Glucocorticoids
2.1.7.5 Sex hormones, growth hormones, anabolic steroids
2.1.7.6 Thyroid drugs
2.1.7.7 Vasopressin and somatostatin analogues

Antidiabetic Drugs

2.1.7.1
Insulin

- Released from pancreas, binds to receptors on cell surface of insulin-sensitive tissue
- Hepatocytes, myocytes, adipocytes

Sulfonylureas

- Stimulate pancreatic insulin release
- Bind to receptors that result in closure of the K_{ATP} channels
- Results in multistep process that increases insulin release

Meglitinides

- Structurally different from sulfonylureas
- Bind to same receptors that result in closure of the K_{ATP} channels
- Results in multistep process that increases insulin release
Biguanides

- Inhibits gluconeogenesis, decreasing hepatic glucose output
- Also enhances peripheral glucose uptake

Thiazolidinediones

- Decrease insulin resistance by potentiating insulin sensitivity in the liver, adipose, and skeletal muscle
- Also reduce hepatic glucose production

Glucosidase Inhibitors

- Acarbose, miglitol
- Oligosaccharides that inhibit alpha-glucosidase enzymes in small intestine
- Blunts postprandial blood glucose concentration
Pharmacokinetics

- Many sulfonylureas have long durations of action

Clinical Manifestations

- Insulin, sulfonylureas, meglitinides
- All cause hypoglycemia
- CNS effects predominate with hypoglycemia
- Brain uses glucose almost exclusively as energy source (ketones in starvation)

Management

- Supportive care
- Reversal of hypoglycemia
- Insulin
 - Titrate dextrose infusion as needed
Management

- Sulfonylureas
- Feed patient when appropriate,
- Octreotide
 - Somatostatin analogue, blocks insulin release from pancreas

Special Consideration

- Metformin associated lactic acidosis (MALA)
- Metformin inhibits hepatic lactate update and conversion of lactate to glucose
- 2 entities

Special Consideration

- MALA
 - Lactic acidosis associated with underlying medical disease (especially renal insufficiency)
 - Metformin overdose
Bone Active Drugs

2.1.7.2

Calcitonin & bisphosphonates

Calcitonin

- Inhibits osteoclast activity, reduces bone reabsorption
- Used to treat hypercalcemia
- Can cause hypocalcemia

• Inhibits osteoclast activity, reduces bone reabsorption
• Used to treat hypercalcemia
• Can cause hypocalcemia
Bisphosphonates

- Inhibits osteoclast activity, reduces bone reabsorption
- Can be used to treat hypercalcemia, osteoporosis
- Associated with osteonecrosis of the jaw

Electrolytes & Minerals

2.1.7.3

Calcium

- Ca++ homeostasis is regulated by the endocrine system
- Interaction between vitamin D, parathyroid hormone, and calcitonin
- Ca++ essential in maintaining function of heart, vascular smooth muscle, skeletal muscle and nervous system
Calcium

- Hypocalcemia
- Paresthesias, muscle cramps, carpopedal spasm, tetany, seizures, prolonged QTc
- Hypercalcemia
- Lethargy, muscle weakness, nausea, vomiting, constipation, altered mental status, dysrhythmias

Glucocorticoids

2.1.7.4

- Class of steroid hormones that bind to the glucocorticoid receptor (present in nearly all vertebrate animal cells)
- Both metabolic and immunologic effects
Adverse Effects

- Immunosuppression
- Hyperglycemia
- Skin fragility
- Osteoporosis
- Weight gain
- Adrenal insufficiency
- Anovulation

Sex Hormones, Growth Hormones, and Anabolic steroids

2.1.7.5

Anabolic Steroids

- Androgenic anabolic steroids (AAS)
- Increase muscle mass, lean body weight, cause nitrogen retention
- Responsible for secondary sex characteristics (hair, voice, etc)
- Testosterone is the prototype
Anabolic Steroids

- 1990 Anabolic Steroid Control Act
- Amended the Substance Control Act
- Made AAS schedule III
- 2004 Anabolic Steroid Control Act
- Added certain precursors (like androstenedione) to the list of substances

Anabolic Steroids

- Testosterone is rapidly degraded in the liver
- For clinical usefulness:
 - Esterify the 17-hydroxy position to form a hydrophobic compound suitable for injection
 - Alkylate the 17-hydroxy position for an oral preparation

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Trade Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testosterone</td>
<td>Meditech</td>
</tr>
<tr>
<td>Anadrol</td>
<td>Anabol</td>
</tr>
<tr>
<td>Androstenol</td>
<td>Androstenol</td>
</tr>
<tr>
<td>Methyltestosterone</td>
<td>Methyltestosterone</td>
</tr>
<tr>
<td>Oral testosterone</td>
<td>Oraltestosterone</td>
</tr>
<tr>
<td>Testosterone enanthate</td>
<td>Testosterone enanthate</td>
</tr>
<tr>
<td>Testosterone cypionate</td>
<td>Testosterone cypionate</td>
</tr>
<tr>
<td>Testosterone undecanoate</td>
<td>Testosterone undecanoate</td>
</tr>
<tr>
<td>Testosterone propionate</td>
<td>Testosterone propionate</td>
</tr>
<tr>
<td>Testosterone enol</td>
<td>Testosterone enol</td>
</tr>
</tbody>
</table>

Goldfrank’s Toxicologic Emergencies, 8th ed
Terminology

- Cycling
 - AAS use intervals (2 months on/2 off)
- Stacking
 - Combining several AAS at one time
- Plateauing
 - Developing tolerance

Terminology

- Pyramiding
 - Start with low dose, increase, then decrease
- Bridging
 - Changing to short acting agents just prior to drug testing
Endocrine

Clinical Manifestations

• Musculoskeletal
 • Increase muscle mass and size
• Hepatic
 • Hepatic subcapsular hematoma, peliosis hepatis

Clinical Manifestations

• Infectious
 • Local complications from injecting
• Dermatologic
 • Keloids, sebaceous cysts, comedones, seborrheic furunculosis, folliculitis, striae

Clinical Manifestations

• Endocrine
 • Gynecomastia, testicular atrophy, reduced spermatogenesis, breast atrophy in women
Clinical Manifestations

- Cardiovascular
 - Acute MI, sudden cardiac death, biventricular hypertrophy, myocardial fibrosis, contraction band necrosis
- Psychiatric
 - Depression, mania, delirium, insomnia, aggression

Clenbuterol

- Beta-2 agonist with anabolic properties
- Overdose will have beta-2 agonist characteristics

Human Growth Hormone

- Anabolic peptide hormone
- Stimulates protein synthesis
- Adverse effects
 - Myalgias, arthralgias, carpel tunnel syndrome, edema, acromegaly, hyperglycemia
Thyroid Drugs

2.1.7.6

Thyroid Function

• Influenced by hypothalamus, pituitary gland, thyroid gland, and target organs

Thyroid Function

• Hypothalamus releases thyrotropin releasing hormone (TRH)
• TRH causes pituitary gland to release thyroid stimulating hormone (TSH)
• TSH causes thyroid to release T3 and T4
• T3 and T4 affect end organs (metabolic consequences)
Thyroid Function

- 95% of circulating hormone is T4
- T3 has 3x hormonal activity
- T4 is de-iodinated intracellularly to T3

Pharmacology

- Desiccated thyroid
 - Animal derived, contains T3 and T4
- Levothyroxine
 - Synthetic T4
 - Most widely used for hypothyroidism

Toxicity

- 7-10 day delay
- Most remain asymptomatic or only mildly symptomatic
- Treatment
 - Supportive care, beta-blockers
Thioamides
- PTU and methimazole
- Used to treat hyperthyroidism
- Both inhibit T3/T4 release
- PTU also blocks peripheral deiodination of T4 to T3
- Little data on overdose

Iodides
- Iodide salts were used before Thioamides were available
- Inhibit T3/T4 release

Iodism
- Rash, laryngitis, bronchitis, esophagitis, conjunctivitis, drug fever, metallic taste, salivation, headache, bleeding diathesis