Efficacy of Hydroxocobalamin as Treatment for Nifedipine-Induced Shock

Murphy CM1, Runyon M1, Gellar M1, Katz M1, Williams C1, Rozario N2, Kerns WP1
1Department of Emergency Medicine, Carolinas Medical Center, Charlotte, NC
2Dickson Advanced Analytics, Carolinas Medical Center, Charlotte, NC

BACKGROUND

- Hydroxocobalamin is currently approved for use in treating cyanide toxicity.
- Adverse effects include increased blood pressure.
- Increased blood pressure has also been noted in healthy humans, humans treated for cyanide toxicity and porcine models of cyanide toxicity.
- Recent studies:
 - Demonstrate successful use of hydroxocobalamin in treating vasopressor shock during cardiac bypass.
 - Provide data supporting improvement of blood pressure in swine models of hemorrhagic shock.

Mechanism of Action:

- Hydroxocobalamin inhibits nitric oxide synthase and scavenges nitric oxide (NO), and it is this activity which has been linked to increases in mean arterial pressure (MAP).
- Several studies have demonstrated that NO is an important chemi- nal mediator of vasopressor shock.
- Hydroxocobalamin is theorized to act via vasodilation through the NO pathway.

HYPOTHESES

Primary Hypothesis:

- Hydroxocobalamin will improve survival in swine with nifedipine-induced shock.

Secondary Hypotheses:

- Hydroxocobalamin will improve hemodynamics in swine with nifedipine-induced shock.
- Hydroxocobalamin will improve laboratory markers of perfusion (creatinine, lactate, etc.) in swine with nifedipine-induced shock.

METHODS

- IAUCP approved study of Yorkshire swine (36-50 kg).
- Sedated with alpha-chloralose, mechanically ventilated, and instrumented for drug delivery and hemodynamic monitoring.
- Ozone response curves of nifedipine (NP) and hydroxocobalamin (HX) performed.

RESULTS

Mortality

- Animals were divided into 3 groups:
 - Group 1: Control (n=9)
 - Group 2: Nifedipine + saline (n=9)
 - Group 3: Nifedipine + hydroxocobalamin (n=9)
- Nifedipine (0.256 mg/kg/min) infused
- Toxicity reached when MAP decreased by 20%.

Change in Hemodynamics:

- Raw data was analyzed at specific time points using the Bonferroni correction.
- Significant differences in MAP and diastolic blood pressure (DBP) were noted (p<0.05).

Primary Hypothesis:

- Experimental Protocol
- Baseline Characteristics
- Secondary Hypotheses:

CONCLUSION

- Hydroxocobalamin did not improve mortality in this model of nifedipine toxicity.
- Significant changes in hemodynamics were noted with and compared to raw and predicted hemodynamic data.
- May suggest benefit as a bridge to other therapy (inhibition of HCO3, ECMO, transfer).
- Further investigation of hydroxocobalamin as a treatment for nifedipine and other calcium channel blocker toxicity is warranted.
- Alternative dosing strategies.

ACKNOWLEDGEMENTS

Funding for the project made possible by:
- Department of Emergency Medicine Research Division of Carolinas Medical Center.
- Special thanks to Kristin Engebretsen, Vik Bebarta, and Dave Tanen for their assistance.
- Thanks to Edwards LifeSciences for in-kind donation of EVO-1000 monitor.

REFERENCES
