

Introduction:

 Cardiovascular drugs are the substance category with the 3rd increased rate of exposure (Bronstein et al., 2010).

 No systematic review has been published for the treatment CCB poisoning.

 CCB poisoning carries a high mortality (6%) and, morbidity (50%) (St-Onge et al., 2012).

Objective:

ction

du

Discussion

Evaluate the efficacy of interventions considered for the treatment of CCB poisoning in adults.

Summary and quality of evidence (QOE):

(when a femoral cannulae is used). (low QOE) **Conclusion:**

- This study is the first systematic review to summarize the evidence concerning the effects of treatments for CCB poisoning. • Head-to-head comparisons in human clinical trials should be done concerning the use of vasopressors, HDI and ECLS.

Treatment of calcium channel blocker poisoning: a systematic review

St-Onge M¹, Dubé PA², Gosselin S^{3,4}, Guimont C⁵, Godwin J¹, Archambaut P⁵, Chauny JM⁶, Darveau M⁵, Frenette AJ⁶, Le Sage N⁵, Poitras J⁵, Provencher J⁵, Juurlink D^{1,7}, Blais R⁴ (1- University of Toronto, 2- INSPQ, 3- McGill University, 4- Centre antipoison du Québec, 5- Université Laval, 6- Montreal University, 7- Ontario & Manitoba Poison Center)

Research question:

- **P**: In adults poisoned with a CCB I: which intervention(s)
- **C**: when compared to no-intervention or to other intervention(s)
 - **O**: improve primary outcomes (mortality, hemodynamics, functional outcomes) or secondary outcomes (hospital LOS, ICU, LOS, duration of vasopressors, CCB
- serum level)
 - **S**: as shown by any type of study?

	Intervention		Observatio	nal studies		Case series		Animal st	tudies
	S (n= number of articles including case reports (CR))	n	STROBE checklist (/22)	THOMAS' tool	n	Institute of Health Economics (IHE) tool (/20)	n	ARRIVE checklist (/20)	NRCNA checklist (/16)
	High-dose insulin (n = 33, 22 CR)	3	6 (4-9)	Weak	4	6 (4-13)	4	15 (11-18)	8 (6-9)
	Extracorporeal life support (n = 11, 7 CR)	1	17	Weak to moderate	3	11 (9-15)	0		
rrelevant	Calcium (n = 38, 20 CR)	0			1 0	6 (2-10)	8	12 (5-16)	5 (3-7)
nings) 97)	Vasopressors (n = 27, 10 CR)	0			8	6 (2-10)	9	14 (11-18)	6 (4-9)
	Decontamination (n = 8, 2 CR)	0			6	6 (3-8)	0		
	Pacemaker(n = 7, 2 CR)	0			5	7 (4-10)	0		
kcluded:	Glucagon (n = 16, 10 CR)	0			3	7 (3-9)	3	13 (11-15)	6 (6-6)
L)	Atropine (n = 5, 0 CR)	0			3	7 (3-10)	2	11 (11-11)	6 (5-6)
	4-aminopyridine (n = 10, 0 CR)	0			2	9 (8-9)	8	14 (10-17)	6 (5-8)
	Lipid emulsion (n = 20, 16 CR)	0			1	8	3	14 (13-15)	7 (6-7)
	$\frac{1}{1} \frac{1}{20}, 100000$	0			1	8	4	16 (14-16)	6 (5-8)
	Plasma exchange (n = 3, 2 CR)	0			1	9	0		
	BayK8644 and CGP 28932 (n = 3, 0 CR)	0			0		3	15 (14-17)	5 (5-6)
	Digoxin (n = 3, 0 CR)	0			0		3	13 (12-14)	6 (5-7)
	Phosphodiestera se inhibitors (n = 6, 4 CR)	0			0		2	16 (15-17)	5 (4-5)
waludadu	Cyclodextrin (n = 2, 0 CR)	0			0		2	16 (15-16)	7 (6-7)
2)	Liposomes (n = 2, 0 CR)	0			0		2	15 (14-16)	6 (6-7)
	Albumin dialysis (n = 3, 2 CR)	0			0	8	1		
	L-Carnitine (n = 1, 0 CR)	0			0		1	17	7
without focus	Bicarbonates (n = 1, 0 CR)	0			0		1	15	9
	Fructose-1,6- diphosphate (n = 1, 0 CR)	0			0		1	14	7
ut focus on	PK 1195 (n = 1, 0 CR)	0			0		1	13	5
st)	Triidothyronine (n = 1, 0 CR)	0			0		1	15	6
	(n = 1, 0 CR) CASE REPORTS ONLY		 Meth Cha Dialy Intra 	nylene blue (n = rcoal hemoperfu ysis (n = 3) n-aortic balloon p	1) sion (r	n = 4) n = 2)			

- This systematic review demonstrates a possible benefit of HDI on hemodynamics and on mortality while increasing the risks of hypoglycemia and hypokalemia. (low QOE) • It underlines a possible role for the use of ECLS to improve survival in patients in cardiac arrest or severe shock. Complications included bleeding, thrombosis or limb ischemia
- Calcium, dopamine, norepinephrine, epinephrine may improve hemodynamics. (very low QOE)

Eligibility criteria:

- All types of studies including case reports published/unpublished in any language.
- In-hospital adults or animals treated for a CCB poisoning.
- Defined intervention(s) meant to improve the targeted outcomes.

Information sources (up to August 2012):

• Cochrane, Medline/OVID, Pubmed, EMBASE, Toxline, International pharmaceutical abstracts, conference abstracts, trials registries, Google scholar searched, and selected \geq authors contacted.

Study selection, data abstraction and quality analysis:

 Qualified independent reviewers using pilot tested forms. • Cochrane risk of bias (CT), STROBE checklist (OS), Thomas' tool (OS), Institute of Health Economics' tool (CS), Arrive and, NRCNA checklist (AS).

Reported improvement in survival in the literature:

- AS: lipid emulsion for IV CCB intoxication

Reported improvement in hemodynamics in the literature:

- OS: HDI and ECLS
- AS and CS: epinephrine, dopamine, norepinephrine,
- 4-aminopyridine, levosimendan, plasma exchange
- AS: lipid emulsion, liposomes

Interrater agreement

- OS STROBE checklist: Kappa of 0.90 (95%CI 0.82-0.99)
- CS IHE tool: Kappa of 0.80 (95%CI 0.76-0.84)
- AS ARRIVE checklist: Kappa of 0.90 (95%CI 0.88-0.92)
- AS NRCNA checklist: Kappa of 0.98 (95%CI 0.96-0.99)

• Lipid emulsion may improve hemodynamics in models of IV verapamil overdose. Atropine, glucagon, the use of a pacemaker and plasma exchange demonstrated inconsistent results.

• OS: high-dose insulin (HDI) and extracorporeal life-support (ECLS) • AS and CS: calcium, epinephrine, dopamine, norepinephrine

Inconsistent results: atropine, calcium, glucagon, pacemaker

Acknowledgements: Dr Laurie Morrison Dr Gordon Rubenfeld Dr Tasnim Sinuff

