Observed Behaviors During Mass Chemical Exposures

Mark Kirk, MD, FACMT
American College of Medical Toxicology
Bethesda, MD, April 29, 2014

Chemical Agents of Opportunity

Learning Objectives

By the end of this module participants will be able to:
• Understand the psych impact of mass chemical exposures
• Provide appropriate response to the mental health needs of victims of real & perceived events
• Describe expected behaviors of large groups of people after a perceived toxic chemical exposure
• Recognize signs & symptoms of acute psychological / emotional response to a traumatic event
• Develop a strategy to aid victims with fear/strong emotions following a real or perceived toxic chemical exposure

Some Key Messages

• Physiologic responses to a perceived threat can lead to a range of symptoms
• There are characteristic features of crowd response
• Sorting out physical responses to a toxic exposure from physiological and psychological responses to a stimulus can take time and may not be “100% provable”
50 people report nausea and several vomit after smelling a sulfur-like odor. What is a likely explanation?

1. Hydrogen sulfide poisoning
2. Food poisoning
3. Mass psychogenic illness
4. Panic

Case 1: “The Toxic Lady”

- A 31-year-old cancer patient is rushed by EMS to the nearest LA suburb ED on March 19th, 1994.
 - An “oily sheen” is noted on her chest.
- During the resuscitation, a nurse drawing her blood notices a peculiar acrid smell that seems to be coming from the patient and passes out.
- The senior EM resident picks up the syringe used to draw the blood and notices yellow crystals, smells it, collapses.
 - Within minutes, 4 more care providers are “overcome.”
- During the ensuing evacuation the patient dies

Case 1: Leading Theories

- Patient drank pesticide in suicide attempt or used a solvent (DMSO) as a home cancer remedy
- Hospital plumbing emitted a toxic gas
- A secret methamphetamine lab operated in the hospital basement.
- “Mass hysteria”
Case 1: “The Toxic Lady”

- 37 exposed
 - 11 noticed unusual smell
 - Description varied: garlicky, ammonia like, gas-like, or chemical-like
 - 26 did not notice odor
 - Paramedics who transported patients and drew blood in the ambulance noticed no odor and developed no symptoms
- 23/37 developed at least one symptom

Case 1: Mass Psychogenic Illness or Toxic Exposure?

- 5 health care staff hospitalized
 - ED nurse hospitalized for 9 days developed chronic severe headaches, fatigue, dyspnea
 - A psychiatrist insisted it was an organic cause
 - ED physician hospitalized in ICU for 2 weeks requiring mechanical ventilation
 - 3 months in a wheelchair
 - Avascular necrosis of knees requiring 20 operations

Case 1: Three Investigations

- Coroner
 - Patient died from cervical cancer
 - Fumes that sickened hospital workers were just the “smell of death”
- Cal-OSHA
 - No safety violations
 - Three employees had “involuntary psychological reaction to some agents” while the rest suffered from mass hysteria
- California Dept of Health Services (CDC)
 - “An outbreak of mass sociogenic illness perhaps triggered by an odor”
 - Also possible that a few staff members were exposed to unknown toxic chemical
What is the correct terminology to identify “mass psychogenic illness”?

More Common Terms
• Mass Sociogenic Illness
• Epidemic Hysteria
• Mass Hysteria
• Traumatic stress response

Less Common Terms
• Epidemic transient situational disturbance
• Psychosocial casualties
• Environmental somatization syndrome
• Psychological sequelae
• Psychic possession
• Crowd poison

Definitions
• Diagnostic and Statistical Manual of Mental Disorders-IV-TR
 – Epidemic Hysteria
 • Shared symptoms develop in a circumscribed group of people following “exposure” to a common precipitant.
• Medical literature
 – Multiple Unexplained Symptoms
 • Typically chronic and not triggered by a specific event

Faculty Disclosure
• Faculty: Mark Kirk MD
 – Relationships with commercial interests: none
 – Speakers Bureau/Honoraria: none
 – Consulting Fees: none
 – Other: none
Be Careful What You Call It!

- Condescending terms
 - Negative connotations
 - Hysteria implies individual is to blame for illness
- Of course, physicians cannot have mass psychogenic illness
 - 1955 hospital epidemic with 300 affected
 - Once medical staff became affected, condition labeled as “epidemic benign myalgic encephalomyelitis”

Case 2: Cyanide

- 06:00 am
 - A pail caught fire at a plating company containing:
 - Sodium meta-nitrobenzene (85%)
 - Potassium cyanide (15%)
 - 15 workers of a downwind warehouse smelled smoke and noticed brief upper respiratory irritation
 - Evacuated to nearby (5 miles) airport facility but not informed of potential cyanide exposure

Case 2: Cyanide (Continued)

- The original 15 evacuees and 85 contacts learned of cyanide exposure and several began complaining of chest tightness, nausea and dizziness
- “Several are feeling ill and we’ve got about 50 people that were exposed over there, they’re awake and oriented, they just wanted to be checked out.”
Case 2: Cyanide (Continued)

- 9:30 am Incident Command decides
 - No decontamination at scene necessary
 - Transport to area hospitals
 - Hospital 1: 36 patients
 - Hospital 2: 52 patients
 - Hospital 3: 12 patients
- 9:50 am Treatment and Disposition
 - Hospital 1:
 - Gross decontamination in parking lot
 - Lilly Cyanide Antidote Kit (N=2)
 - Media interviews with cameras rolling
 - Hospitals 2 & 3: Quick check and release

Medical Personnel Responses

“Cyanide is deadly. Cyanide is bad stuff! If it were me, I’d go get checked out.”

- EMTs wearing surgical masks to drive.
 - Upset that patients were not decontaminated.
- Medics c/o lightheadedness and smelled ‘bitter almonds’

Case 2: Cyanide (Continued)

- 12:30 pm media coverage
 - Footage and interviews from Hospital 1
- Calls to Poison Center from:
 - Previously treated and released employees concerned they had not received “appropriate treatment”
 - Hospitals 2 and 3 because several patients returned for “appropriate treatment”
Lessons Learned

- Patients remote to exposure may exhibit symptoms
 - May develop symptoms on learning of the exposure
- Medical personnel can be affected
 - They can become victims
 - They may react inappropriately
 - e.g., use therapies with potential for adverse reactions
- Treatment for presumed poisoning can be harmful
 - Decontamination in extremely cold weather
 - Adverse effects of antidotes

Expect Large Numbers of Patients after Mass Chemical Exposure

- Types of Patients
- Obvious Medical Needs
 - Poisoned
 - Contaminated
- Nonspecific symptoms
 - With no apparent exposure
- Asymptomatic
 - “Just want to get checked out”

Magnitude of Problem

- Tokyo Sarin Incident 1995
 - 12 died
 - 1,200 required some care
 - 5,500 sought medical care but had no exposure
- Bhopal Disaster 1984
 - >10,000 severe and 5000 died
 - 200,000 sought medical care
Magnitude of Problem

• Operation Desert Storm 1991
 – 39 Scud missiles reached ground
 – 1000 casualties/ 2 deaths
 – 544 “anxiety attacks” and 230 “atropine overdoses”

What is Panic?

• Panic is:
 – A sudden fear which dominates or replaces thinking [wikipedia.org]
 – A sudden unreasoning terror often accompanied by mass flight [www.merriam-webster.com]
 – Often used incorrectly to describe any type of fear, flight, evacuation, or lack of coordination
 – Flight is often appropriate
• Panic flight is
 – Irrational, hysterical or groundless flight
 – Reckless disregard for others

Can People Panic during a Disaster?

http://scifipedia.scifi.com/
Cycle of Fear and Perceived Poisoning

- Perceived high risk of uncontrolled release of dreaded toxin
- Input
 - Mucous membrane irritation
 - Lightheadedness
 - Noticing a bad odor
 - Observing friends become ill
- Natural response is fear
- Fear leads to autonomic arousal
 - Palpitation
 - Sweating
- Autonomic arousal misinterpreted as a symptom of poisoning

Panic is Rare During a Disaster

- Observed groups of patients in period of impact
 - “Cool and Collected” (75%)
 - Stunned and bewildered (>20%)
 - Confused, anxious, hysterical crying (<5%)
- Not terribly different than what occurred on 9/11/2001

A lump in the throat and a sudden urge to urinate are signs of what type of reaction?

1. Fear
2. Panic
3. Hysteria
4. Epidemic myalgic encephalomyelitis
5.
6.
7.
8.
9.
10.
Case 3: A Gas Smell

- A gas odor is noted in a school classroom
- The teacher complains of headache, nausea, shortness of breath and dizziness
- 80 students, 19 staff, 1 family member go to the ED
 - 38 hospitalized for unclear reasons
- Scene investigation: no environmental cause
 - 5 days later school reopened
 - 71 people return to the ED for similar symptoms
- Exhaustive investigation: no environmental cause

Features Suggestive of "Mass Psychogenic Illness"

- Rapid onset and recovery
- Contagious, spreads via:
 - Sight (particularly "line of sight")
 - Smell
- Diversity of symptoms w/o physical signs or abnormal labs
- Benign morbidity with no sequelae
 - Though remember the "Toxic Lady"
- Often recurs when returning to environment
- No reasonable organic basis
 - Environmental investigation is negative

Symptoms Suggestive of "Mass Psychogenic Illness"

From Jones, et al. (in order)
- Headache
- Dizziness/lightheadedness
- Nausea
- Drowsiness
- Chest tightness
- Breathing difficulty
- Sore throat
- Burning eyes
- Cough
- Abdominal pain/cramps
- Nervousness
- Watery eyes

Other typical symptoms:
- Diaphoresis (sweating)
- Dry mouth
- Involuntary Urination
- Numbness and tingling
- Palpitation/tachycardia
- Syncope
- Tremor
- Weakness
Evidence for Mass Psychogenic Illness

IN FAVOR
- No source identified
 - Exposures are below occupational exposure standards
- No correlation between attack rate and presumed level of exposure to toxic agent
 - Lack of dose-response

AGAINST
- Adequacy of patient evaluations:
 - Can everything be ruled out?
- Can you ever have a comprehensive environmental investigation?
 - Delayed environmental sampling
 - Passing plume

Is it Psychological or Is it Poisoning?

Psychological
- Chest Tightness
- Breathing difficulty
- Tachycardia
- Nausea/Vomiting
- Involuntary Urination
- Headache
- Tremor
- Sweating
- Syncope

Nerve Agent Poisoning
- Chest Tightness
- Breathing difficulty
- Bradycardia or Tachycardia
- Nausea/Vomiting
- Involuntary Urination
- Headache
- Fasciculations
- Diaphoresis
- Paralysis
- Coma

Cyanide Poisoning
- Breathing difficulty
- Tachycardia
- Nausea/Vomiting
- Headache
- Dizziness
- Coma
- Seizures
- Dysrhythmias
Is there a solution?

Is it Real?

- Emergency Response
 - Don’t get caught up on figuring out if it exists or not
 - “Psychogenic illness” is a diagnosis of exclusion
 - Create a "holding environment"
 - Location away from high-tempo triage activities
 - Symptoms monitored and re-evaluated
- Research
 - Need for good epidemiological data that clarifies characteristics of each group (defines needs)

Planning Suggestions

- Expect the problem – Plan for it
- “Base disaster plans on what people are likely to do rather than what they should do”

 Auf der Heide: Disaster Response: Principles of Preparation and Response
- Don’t ignore these patients
 - And take them seriously
- Early diagnostic & management decisions are critical to the success of the emergency response
 - EDs have little surge capacity
 - Decontamination and PPE burden the health care system
Training Suggestions

• Teach emergency responders basic toxicology principles
 – e.g. Dose-Response (“dose makes the poison”)
• Look for objective signs of toxicity
 – Toxidrome recognition
 • Irritant Gas Syndrome
 • “Knock-down” or metabolic poisoning
 • Opioid intoxication
 • Cholinergic/Cholinesterase inhibitor

Improve Communications

• Information is the ANTIDOTE for fear
• Make substance identification a priority and report to health care providers as soon as possible
• Make inter-agency coordination a priority in planning
 – Strive for “single voice” communications with the media and the public. When you speak, you speak for all of us!
• Teach risk communication skills to ALL responders

Unconventional Partnerships

• Behavioral care experts
• Epidemiologists
 – Develop tools to evaluate behaviors during catastrophic events
 – Evidence based planning based on Social-behavioral observations
• Medical Toxicologists
 – Medical Toxicologists are clinical experts in the human health effects of poisoning
 – Accessed through ACMT, poison centers, or direct contact
Role of Media and Scientists in a Disaster

• Communication is very important, but miscommunication is very common
• Statements such as “it is unknown” are taken as “it will be very bad”
• The next video clip is an earlier report on the polybrominated biphenyl (PBB) cattle feed contamination discussed in the “Delayed Onset Toxin” module (Module 6)
 – Note the unrelated disorders, frustrations, and fear depicted as causally linked to the cattle feed contamination

Information Resources

• Poison information recognized as an essential component in chemical emergencies
• Many excellent sources
 – ATSDR Planning Guide
 – CDC website

Summary

• Expect large numbers of patients after mass chemical exposure
 – Often difficult to identify those needing immediate medical care
• Avoid labels without objective diagnostic criteria
 – “Worried well”, “Mass hysteria” less helpful than “I know you are worried; things check out OK now. I will check on you again…”
• Use historic lessons, expected behaviors to guide planning
• Communication is Key
 – Interagency coordination may avoid needless fear
• Know your resources and partner with them
 – Including ACMT/Medical Toxicologists
Questions