Breath and Urine Alcohol Testing: Relationship to BAC and Use Patterns

ACMT ASM
Huntington Beach, CA
March 17, 2016

Michael G. Holland, MD, FAACT, FACMT, FACOEM, FACEP
Associate Professor, SUNY Upstate Medical University &
Consulting Medical Toxicologist, Upstate New York Poison Center, Syracuse, NY
Occupational Medicine Director, Glens Falls Hospital Center for Occupational Health; Glens Falls, NY
Senior Medical Toxicologist, Center for Toxicology and Environmental Health; North Little Rock, AR

Disclosures

- No financial relationships to disclose
- I perform medical-legal consulting regarding drug and alcohol impairment
- My practice of Occupational Medicine uses BAT devices and I am a BAT trainer

Alcohol Biomarkers

- **Objective** measures that are helpful as:
 1. **Outcome measures** in studies
 2. **Screens** for possible alcohol problems in individuals with unreliable drinking histories
 3. **Evidence of abstinence** in individuals prohibited from drinking alcohol

These tests are complimentary to self-report assessments
Categories of Alcohol Biomarkers

- Indirect Biomarkers
- Direct Biomarkers

Indirect Biomarkers

- Assesses alcohol effects on body systems
- Non-specific, insensitive
- AST, ALT, GGT, MCV
 - Things other than EtOH abuse cause elevations
 - Some abusers do not have elevations

Indirect Biomarkers

- Newest: CDT- Carbohydrate-deficient transferrin
 - Elevated after > 2 weeks of heavy EtOH abuse (>5 drinks/day)
 - Few other things cause elevations
 - Insensitive to bingeing
Direct Alcohol Biomarkers

- Analytes of alcohol or its metabolites
 - Measures alcohol directly in body matrices
 - Or alcohol adducts in body matrices
- Most common is BAC, BrAC

Direct Alcohol Biomarkers

- Alcohol Metabolites:
 - Most alcohol is oxidized by ADH and AlDH
 - A very small amount is broken down non-oxidatively, creating analytes that can be measured for a longer period than alcohol itself
 - Analytes are measured in the blood or urine.

Alcohol Metabolism

Unchanged in breath, urine, sweat

< 5%

Ethyl Glucuronide (EtG)

< 1%

Ethanol in Blood

< 1%

Ethyl Sulfate (EtS)

< 1%

UDP-glucuronosyltransferase

< 1%

Sulfotransferase

> 95%

ACDH & ADH

Acetaldehyde and acetic acid
Breath Alcohol Concentration (BrAC)

- BrAC of terminal portion of a prolonged exhalation reflects the arterial BAC
- Expressed as g ethanol per 210 L breath
- Machines designed to ignore initial (2/3) of breath and measure terminal portion only
- Salivary alcohol gone in 15 minutes
 - Mandatory retest in 15 minutes
 - 2nd test must agree with first by ≤ 0.02g/210L
- Eructation, vomiting can contaminate

BrAC testing Devices

- BrAC testing devices must be calibrated
- Air blanks and gas cylinders with known [EtOH]
- QA procedures and device user training logs
- Device manufacturers must submit their equipment to NHTSA to get on CPL
- BrAC frequently subject to challenges by DWI defense counsel

BrAC Testing Devices

- Three types in common use on NHTSA CPL:
 - Infrared
 - Fuel cell
 - Chemical oxidation
- Challenges to accuracy are rampant in DWI defense
- Most attack the human element, not the technology
- Many jurisdictions use BrAC screening, get BAC confirmatory
BrAC Testing Devices:
1) Infrared Spectroscopy
- All chemicals absorb infrared light at specific wavelengths
- Ethanol absorbs strongly at 3.3-3.5 µ (acetone too), but more specific band at 9.5 µ
- Amount of infrared energy lost from Br from chamber entry to exit reflects infrared absorption by EtOH, is proportional to [EtOH]
- Acetone potential interferent if 9.5 µ not used

2) Fuel Cell, aka Electrochemical Oxidation
- Converts fuel and an oxidant into DC
- EtOH converted to acetic acid
 - Gives off two electrons
 - Current produced is proportional to [EtOH]
- Very specific for alcohols (MeOH, IsOH too)
- Can be very small, low power usage: ideal for hand-held devices
- Acetate can build up on fuel cell with many consecutive + tests, prolongs time to return to baseline

Alkosensor IV
3) Chemical Oxidation/Photometry

- First type of BrAC device developed and brought into widespread LE use
- Breath enters chamber of oxidizing mixture
- Reaction of EtOH with the oxidizers causes a decrease in UV light absorbed, measured by photometer, proportional to [EtOH]
- Still in use in a few jurisdictions
- No longer manufactured, Breathalyzer 900A was the only one left

BrAC Testing Devices: Dual Detectors: FC and IR

- Employs both Fuel Cell and Infrared
- Usually one method is used to validate the other
- Any discrepancy invalidates the test
- Can be used stationary or mobile
- Very accurate and hard to challenge due to redundancy
BrAC to BAC ratio

- Assumption is that blood: breath alcohol ratio is 2100:1, and that is basis for all testing in NA
- Actual ratio is closer to 2300:1
- This actually favors the arrestee
 - Proven in side by side roadside tests
 - BrAC always underestimates true BAC

Converting Serum EtOH to BAC

- Serum: WB ratio:
 - Averages 1.15:1 to 1.10:1
 - So a serum EtOH value is divided by 1.1 to 1.15 to convert to “legal” BAC language
- Some DWI arrestees with positive BrAC present to EDs demanding a retest- will usually not be helpful to them

Other Biomarkers

- Ethyl glucuronide (EtG), ethyl sulfate (EtS), and phosphatidyl ethanol (PEth).
- Usually measured in urine; detectable for days.
 - EtG and EtS tests become positive shortly after even low-level exposure to alcohol
 - PEth requires higher levels of ethanol use, detectable in blood for weeks
Ethyl Glucuronide- EtG
Ethylsulfate- EtS

- EtG: Ethyl β-D-6-glucosiduronic acid

- Approx 0.02% of ethanol is metabolized by phase II conjugation with uridine 5'-diphospho-glucuronic acid (UDPGA) via UDP-glucurolyosyltransferase to form EtG

- EtS produced by sulfotransferase

Ethyl Glucuronide- EtG

- The most studied and the most utilized long-term biomarker

- Can be measured in very [low]

- Detected for ~ 4 days in urine after 1 drink- i.e., the “80-hour test”

Ethyl Glucuronide- EtG

- However, cannot prove beverage alcohol was the source
 - Hand sanitizers
 - Mouthwashes
 - Non-alcoholic beer
 - Old fruit juices
Ethyl Glucuronide- EtG

- Present in very low levels (<100ng/mL) even in abstainers and children
 - Endogenous ethanol by intestinal bacteria
 - Non-apparent dietary ethanol: old fruit juices, sauerkraut, old bananas

Ethyl Glucuronide- EtG

- Perfect for documenting abstinence
 - Underage patients
 - Military in combat zones
- Those requiring abstinence as condition of rehab or probation
 - Probation for EtOH-related crimes
 - Persons in court-ordered rehab as condition of release
 - Impaired professionals as condition of continued licensure

EtG, EtS Measurement Concerns

- Must confirm with LC/MS/MS
 - EIA unreliable, false positives
 - All EIA screen positives must be confirmed
- \([\text{EtG}]\) Varies with hydration, often corrected for creatinine
- Should urine be refrigerated or preserved?
 - EtOH produced from glucose fermentation in urine
 - Refrigeration or preservative in specimen prevents
 - However, UDPGA & ST-ase do not exist in urine
 - Our practice does not refrigerate urine, no preservative in our bottles
- Not FDA-approved medical test, not covered by health insurance
EtG and EtS Kinetics

Winkler Int J Legal Med.

Suggested EtG Cut-offs

- EtG >1,000 ng/mL indicates:
 - Heavy drinking in past 1-2 days
 - Light drinking the same day (or the night before)
Suggested EtG Cut-offs

- EtG between 500–1,000 ng/mL indicates:
 - Heavy drinking previous 1–3 days
 - Light drinking past 24 hours
 - Intense “extraneous exposure” within 24 hr or less

- EtG positive, above LOQ but <500 ng/mL indicate:
 - Previous heavy drinking (1–3 days+).
 - Previous light drinking (12–36 hours).
 - Recent “extraneous” exposure.

EtG and Hand Sanitizer Use

- 9 adults, used ethanol skin sanitizers 20x/day
- EtG levels + but < 120 ng/mL in first morning specimens
- EtG accumulation with repeated dermal ethanol did not occur
EtG and Hand Sanitizer Use

- 11 adults, used Purell® (62% EtOH) q 5' for 10 hours (120 uses each)
- Urine specimens end of each day
 - Mean [EtG] @ end of Days 1, 2, and 3 were 493, 601, and 542ng/mL respectively
 - Range of 0–2001 ng/mL
- EtS may be a good discriminator
 - Very few had + EtS
 - All EtS values < 100ng/mL
 - The sweet spot is probably EtG > 500, with EtS > 250 (this is what our program uses)

EtG and Mouthwash Use

- 10 adults gargled with Listerine® (27% EtOH), 20mL, 30 sec. each, 4 X/d
- Only one subject had + urine EtG
 - 173ng/mL
 - 2 hr post-gargle
- No one had +EtG specimens at first void of each day
- Several + EtS in 7 subjects
 - Maximum EtS value 104ng/mL
- EtS cut-off of 250-500ng/mL seems reasonable

Suggested EtG Cut-offs

- EtG >1,000 ng/mL indicates:
 - Heavy drinking in past 1-2 days
 - Light drinking the same day.
- EtG between 500–1,000 ng/mL indicates:
 - Heavy drinking previous 1–3 days
 - Light drinking past 24 hours
 - Intense "extraneous exposure" within 24 hr or less
- EtG positive, above LOQ but <500 ng/mL indicate:
 - Previous heavy drinking (1–3 days).
 - Previous light drinking (12–36 hours).
 - Recent "extraneous" exposure.
Phosphatidyl Ethanol- PETH

- PETH, a group of glycerophospholipid homologues
- Formed exclusively in the presence of ethanol via the action of phospholipase D
- Found primarily in the RBC membranes
- Long detection window – weeks- due to life of the RBC

Phosphatidyl Ethanol- PETH

- Phosphatidyl ethanol (PETH) is a direct blood-based biomarker
- 48 species of PETH identified
 - PETH 16:0 and PETH 18:1 seem to be the most abundant species.
- Persists in blood for as long as 3 weeks
 - After a few days of moderately heavy drinking (>about four drinks per day)
- Perfect for detecting binge drinking
- Not readily available, being studied
Phosphatidyl Ethanol- PEth

Kwak et al – Clin Tox 2012

- Monitored 2 groups of pregnant women
- Group 1- 26 women-No ethanol use
 - Negative for PEth
- Group 2- 13 women- 2.5- 20 drinks/wk
 - Positive for PEth at >5nmol/L
 - Detectable for up to 4 wks

Comparison of biomarkers with PEth in blood and urine
Winkler- Int J Legal Med. 2012 Dec 29

- Studied the correlation between PEth and other biomarkers (ethyl glucuronide, ethyl sulfate, CDF, GGT)
- 18 alcohol-dependent patients in withdrawal therapy monitored for up to 19 days.
- No correlation between the different markers.
- PEth showed an initial rapid decrease
 - Then a slow decline after the first few days
 - Could still be detected after 19 days of abstinence

Window of Assessment for Various Alcohol Biomarkers
Alcohol Biomarkers and their Usefulness

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Screen for Heavy Drinking</th>
<th>Identifying Relapse</th>
<th>Time to Return to Normal</th>
<th>Monitoring for Abstinence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDT</td>
<td>✓</td>
<td>✓</td>
<td>2-3 weeks</td>
<td></td>
</tr>
<tr>
<td>EtG, EtS</td>
<td>✓</td>
<td>✓</td>
<td>1-3 days</td>
<td>✓</td>
</tr>
<tr>
<td>GGt</td>
<td>✓</td>
<td></td>
<td>2-4 weeks</td>
<td></td>
</tr>
<tr>
<td>MCV</td>
<td>✓</td>
<td></td>
<td>Several months</td>
<td></td>
</tr>
<tr>
<td>PEth</td>
<td>✓</td>
<td>✓</td>
<td>2-4 weeks</td>
<td></td>
</tr>
<tr>
<td>BAT</td>
<td>✓</td>
<td></td>
<td>hours</td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>✓</td>
<td></td>
<td>2-4 weeks</td>
<td></td>
</tr>
<tr>
<td>ALT</td>
<td>✓</td>
<td></td>
<td>2-4 weeks</td>
<td></td>
</tr>
</tbody>
</table>

Bibliography

1) The Role of Biomarkers in the Treatment of Alcohol Use Disorders, 2012 Revision- SAMHSA Advisory. [Link]
3) Bulajic TP, et al. Detection of ethyl glucuronide in urine following the application of Germ-X. Journal of Analytical Toxicology. 30(9):703-4, 2006
4) Rosano TG, Lin J. Ethyl glucuronide excretion in humans following oral administration of oral and dermal exposure to ethanol. Journal of Analytical Toxicology. 32(9):599-600, 2008
5) Ho Soek Kik, et al. Blood levels of phosphatidylethanol in pregnant women reporting positive alcohol ingestion, measured by an improved LC-MS/MS analytical method. Clinical Toxicology (Oct 2012, Vol. 50, No. 10: 988-991)