ACMT National Journal Club: Scientific Review of Human Health Effects of Indoor Mold Exposure

Michael Hodgman, MD, FACMT
Clinical Assistant Professor, SUNY Upstate Medical University

Nicholas Nacca, MD
Fellow in Medical Toxicology, SUNY Upstate Medical University

Michael G. Holland, MD, FAACT, FACMT, FACOEM, FACEP
Clinical Associate Professor, SUNY Upstate Medical University
Upstate New York Poison Center
Syracuse, NY
Diseases associated with mold

- Cutaneous infections, Systemic
- Allergic
 - Asthma, Hypersensitivity pneumonitis
 - Allergic Bronchopulmonary Aspergillosis
- Toxin related
 - Trichothecenes: T-2 toxin, Satratoxin
 - Inhibitors of protein synthesis (peptidyl transferase)
 - Ingestion: Alimentary Toxic Aleukia
Are respired mold, mold products toxic?

- 1990s: claims that moldy indoor environments led to systemic disease
 - Idiopathic Pulmonary Hemorrhage
 - Systemic complaints, chronic fatigue
 - Cognitive difficulties, memory loss
• Litigation bonanza in early 2000s
 – Ed McMahon settles for $7.2 million, claimed that mold sickened him and his wife and led to death of his sheepdog Muffin
 – California family wins $22.6 million settlement over claim that toxic mold caused brain damage and autism in their infant

• This litigation begins to ebb by mid-2000s
Today’s papers

- Update: Pulmonary Hemorrhage/Hemosiderosis Among Infants-Cleveland, Ohio, 1993-96. MMWR 1997;46:33
- Update: Pulmonary Hemorrhage/Hemosiderosis Among Infants-Cleveland, Ohio, 1993-96. MMWR 2000;49:180
- Indoor mold, toxigenic fungi, and (*Stachybotrys chartarum*): Infectious disease perspective. Clin Microbiol Rev 2003;16:144
Report of 8 cases of pulmonary hemorrhage/hemosiderosis in infants from Rainbow Babies Children’s Hospital in Cleveland OH

- All were black, 7 male
- Only 3 were diagnosed at Rainbow Babies in the decade prior
- Tight geographical cluster
- Report that case control study is underway
• 7 cases of pulmonary hemorrhage/hemosiderosis in infants from Wyler Children’s Hospital in Chicago, IL
 – Reported as a result of the investigation surrounding the cases identified in Cleveland
 – 6 were black, 4 male
 – Preceding 3 years only 1 child diagnosed at Wyler
 – No geographical Cluster
MMWR January 1997

- Case Control of 8 Cases from MMWR report in 1994, plus an additional 2 cases identified after publication.
Case Control Study

- January 1993- December 1994
 - 10 cases, 1 death
 - Aged 6 weeks-6 months
 - Close proximity
 - Water damaged homes
Case-Control Study
(of infants identified ‘93-’ 94)

<table>
<thead>
<tr>
<th></th>
<th>Case infants (n=10)</th>
<th>Control Infants (n=30)</th>
<th>P-value/OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>9/10</td>
<td>15/30</td>
<td>P<.05</td>
</tr>
<tr>
<td>Breastfed</td>
<td>0/10</td>
<td>11/30</td>
<td>OR .2, 95% CI: 0-1.2</td>
</tr>
<tr>
<td>Household smokers</td>
<td>9/10</td>
<td>16/30</td>
<td>OR 7.9, 95% CI: .9-70.6</td>
</tr>
<tr>
<td>Residence with major water damage</td>
<td>10/10</td>
<td>7/10</td>
<td>OR 16.3, 95% CI: 2.6-∞</td>
</tr>
<tr>
<td>Stachybotrys Atra quantity</td>
<td>?</td>
<td>?</td>
<td>OR 1.6, 95% CI: 1-30.8</td>
</tr>
</tbody>
</table>

Table reconstructed from data presented in text
...more cases identified...

• Surveillance identified 11 more cases from 1995-1996
 – Similar demographics and clinical presentations
 – 2 deaths

• Review of postmortem examinations of infant deaths from 1993-1995 (172 records)
 – Additional 6 cases identified
 • hemosiderosin laden macrophages in alveoli
 • 3 male, 2 siblings
 • Same demographic
Conclusion of Case-Control Study

• “These findings documented an association between acute pulmonary hemorrhage/hemosiderosis in this cluster of cases and mold growth in their water-damaged homes.”

• “The water damage may have promoted the growth of fungi, including *S. atra*”
Critique of previously published case-control study
 - Characterization of the problem
 - Association with water damage
 - Analysis Methods
 - Sample collection
 - Identification of S. Atra in water damaged homes
Critique #1

– Characterization of clinical problem
 • “Hemosiderosis”
 – Pathological finding not associated with specific disease
 – Therefore retrospectively identified cases & Cleveland cases are not necessarily associated with the original cluster
Critique #2

– Association with water damage
 • Limited descriptive information provided
 – Water damage criteria?
 – Contamination or exposure?
Critique #3

• Analysis Methods
 – Incorrectly calculated airborne calculations of S. Atra (OR 9.8 → 5.5)
 – Delayed sample collection in 1 case (OR 5.5 → 1.9)
 – Illogical age matching (OR 1.9 → 1.5)
Critique #4

• Sample Collection
 – Incomplete blinding
 – Samples collected from inferred case homes were collected differently
 • Aggressive, non-standarized methods used may have falsely inflated the results
Critique #5

- Presence of any *S. Atra* in water damaged homes
 - Similar percentage in case and control homes
Conclusions

• “Serious shortcomings in the collection, analysis, and reporting of data resulted in inflated measures of association and restricted interpretation of the reports. The associations should be considered not proven; the etiology of AIPH is unresolved.”
Aftermath of Cleveland “Cluster of IPH”

- Despite the caution “that further research is needed to determine causality”
 - Near-panic followed
 - Public buildings, schools, etc. were closed
 - Major clean-ups ordered (Hazmat level A)
 - Plethora of litigation
 - Many testing & remediation companies form
Health and immunology study following exposure to toxigenic fungi (*Stachybotrys chartarum*) in a water-damaged office environment. Johanning E, et. al. Int Arch Occup Environ Health 1996;68;207-218

- The setting: a water damaged urban office space that occupies several below ground levels
- The building had flooded and had visibly contaminated sheet rock, insulation, carpeting and ventilation ducts
- The investigation was prompted by workers in office claiming health related effects
• Perform air sampling, surface scrapings for fungi and mycotoxins

• Workers complete a long health questionnaire
 – “Cumulative symptom complex scores....were formed”
 – no definitions, unclear if they have ever been validated
 – authors are not blinded

• Comprehensive battery of immunologic tests
• “Participants under medical treatment for related problems and using medications, i.e., antibiotics, were excluded from the study.”

 – no further discussion or description of the excluded subjects

• Control group: sample of office workers in non-water damaged building

• Workers n = 53 (39 female), controls n = 21 (11 female)

• No clearly defined study question
Air Sampling

- *Cladosporium, Penicillium, Aspergillus* and *Stachybotrys*
- Concentrations are mostly < 120 cfu/m³ with quiescent testing; none to a minority (up to 14%) of isolates are *Stachybotrys*
- Aggressive testing in basement and sub-basement: > 20,000 cfu/m³; 97%+ *Stachybotrys*
- No sampling of control office building
<table>
<thead>
<tr>
<th>Organ system affected</th>
<th>By external comparison:</th>
<th>By internal comparison, according to office location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls $(n = 21)$</td>
<td>Subjests $(n = 53)$ P^a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P^b</td>
</tr>
<tr>
<td>Respiratory system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper airways</td>
<td>43</td>
<td>57</td>
</tr>
<tr>
<td>Lower airways</td>
<td>43</td>
<td>76**</td>
</tr>
<tr>
<td>Worse in past year</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Skin</td>
<td>19</td>
<td>47*</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>52</td>
<td>70</td>
</tr>
<tr>
<td>Eyes</td>
<td>19</td>
<td>57**</td>
</tr>
<tr>
<td>Constitutional (feverish, adenopathy, flu-like)</td>
<td>5</td>
<td>28*</td>
</tr>
<tr>
<td>“Multiple chemical hypersensitivity”</td>
<td>33</td>
<td>43</td>
</tr>
<tr>
<td>Chronic fatigue symptoms</td>
<td>5</td>
<td>24**</td>
</tr>
<tr>
<td>Allergy history</td>
<td>48</td>
<td>60</td>
</tr>
<tr>
<td>Infection (within past year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper respiratory infections</td>
<td>47</td>
<td>62</td>
</tr>
<tr>
<td>Yeast</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>Urinary tract infections</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Health worse since employment at problem-building</td>
<td>N/D</td>
<td>51</td>
</tr>
</tbody>
</table>

$P < 0.05$

$**P < 0.01$

a Difference between external controls and subjects (chi-square)

b Difference between subjects (internal controls) by office location (chi-square)

c Trend by Mantel-Haenszel test for linear association
Blood tests

• Multiple tests (>20), multiple comparisons (>40); Tables 4 and 5

• No real differences
 – Table 4: CD3 count significantly lower in subjects (75.7% v 73.5%), statistically but not clinically different
 – Different statistical approach in Table 5, small differences in WBC, CD3 and NK cells
Health Outcomes

• From the 187 item questionnaire they come up with health outcomes
 – Compare these to selected blood tests and several subject variables (Table 6)
• Except for being female and self assessment of poorer health the differences between “exposed” and “un-exposed” are trivial to marginal
Discussion

• Fungal exposure led to abnormalities to cellular and humoral systems "though the magnitude of some differences was small"

• "Higher and longer indoor exposure to atypical fungi and *S. chartarum* or its chemical products appears to be associated with increased immune reactivity and possibly impaired immunity“

• They do not find IgG or IgE antibodies to *S. chartarum* associated to health outcomes: "its possible that the fungal antigens used in lab are not identical to those in problem building..."
Critique

• Control group office mold exposure not measured
• Exposures were for most part up to 10^2 cfu/m3
 – outdoor environments much greater
 – farming, gardening, landscaping: 10^6 to 10^7 cfu/m3
• Statistical differences in some immune parameters appear clinically irrelevant
• No actual physical exams performed on subjects, symptoms and illnesses all self reported on questionnaire
Critique

• Abstract: “It is concluded that prolonged and intense exposure to toxigenic *S. chartarum* and other atypical fungi was associated with reported disorders of the respiratory and central nervous systems....

• Data presented do not demonstrate any difference in CNS symptoms (Table 3 NS)

• CNS toxicity not discussed in their Discussion
Conclusion

• Wet, mold contaminated indoor environments are unpleasant
• No demonstration that a toxic mechanism is taking place or of systemic toxicity
Holland- Disclosure

• As a Medical Toxicologist, I see patients who have been referred by PMD for health effects suspected to be due to toxic mold exposure
• I perform consults as Occupational Physician for client companies with indoor air quality and Sick Building Syndrome investigations
• Have reviewed toxic tort cases, including some with indoor mold exposures and alleged health effects, for both plaintiffs and defendants
• Primary expert witness work has been for defendants
Beware of Toxic Mold
Indoor Air Quality

• Very subjective, high degree of individual variability
• Depends on multiple factors
 – Temperature
 – Humidity
 – VOC’ s: formaldehyde, toluene, aldehydes, ketones, alcohols, esters, AH, etc
 – Combustion gases (CO, SO₂, CO₂)
 – Fresh air exchanges (CO₂ as marker)
 – Bioaerosoles: Fungi, bacteria, dust mites, etc
Indoor Air Quality

• Other factors determining IAQ perception
 – Job satisfaction
 – Pay level
 – Supervisor factors
 – Quality of work environment
 – Stress levels
 – Ambient noise levels
 – Dust control
 – Occupant gender
 – Lighting
 – Availability of windows
Introduction to Molds

• Fungi (yeasts and molds) are ubiquitous in all indoor and outdoor environments
• Account for 25% of the earth’s biomass
 – They were here before we were!
• > 200,000 known species
• < 100 are known human/animal pathogens
• Eukaryotic
• Cell walls contain chitin or cellulose
• Lack chlorophyll, must obtain food from environment
Molds Perform Vital Function

• Degrade and decompose vegetable matter, such as leaves and trees
• Returns necessary nutrients to the soil
• Molds in outdoor air are lower in the winter, and higher in the summer and fall.
 – Snow cover has melted
 – Warm environment promotes fungal growth
 – Leaves from the prior fall are moist and ready to degrade
Molds are Common and Ubiquitous

• US Census Bureau’s 2003 statistics\(^1\):
 – There are over 119 million housing units in the USA, and 4.7 million commercial buildings
 – Nearly all will experience leaks, flooding, or other excessive indoor dampness at some time
• Mold spores exist on virtually all environmental surfaces
• When water intrusion occurs, mold growth usually results
• Therefore, the mold growth serves as a marker for water damage

Stachybotrys, aka “Toxic Mold”

• Common soil fungus
• Fondness for cellulose
 — Outdoor: straw, grasses, etc
 — Indoor: drywall, wallpaper, wood, etc
• Requires heavy moisture
• Tertiary wall colonizer
 — Comes after primary colonizers *Penicillium* and *Aspergillus*
 — Secondary colonizer *Cladosporium*
• Rarely cultured with standard techniques
 — Selective cultures with cellulose agar: yield >30%
Indoor Mold, Toxigenic Fungi, and *Stachybotrys chartarum*: Infectious Disease Perspective

Kuhn DM, Ghannoum MA

CLINICAL MICROBIOLOGY REVIEWS, Vol. 16, No. 1; Jan. 2003, p. 144–172

- Comprehensive review of literature regarding mold and health effects
- Infectious disease perspective
Fungal Mycotoxins Measurement Problems

• Mycotoxin production depends on:
 – Species, temperature, humidity, growth substrate, nutrient levels, and pH

• When mycotoxins are present, they are contained in fungal mass
 – Miniscule quantities on airborne spores
 – *Stachybotrys* spores are contained in wet, slimy mass
 – Very little available for inhalation absorption even in EXTREME fungal overgrowth conditions

• Serologic testing meaningless
 – Ig levels do not correlate with exposure
 – Large amount of cross-reaction between species
 – Presence does not indicate when or how exposure occurred (i.e., past dietary exposure)
Mold-related Allergic Illnesses

• IgE-mediated allergic diseases
 – Atopic patients, allergic to other allergens: pollen, dust, etc.
 – 5% of general population

• Hypersensitivity pneumonitis (HP)
 – Agricultural exposures predominate- Farmer’s lung
 • Actually due to thermophilic bacterial contamination of moldy hay
 – Indoor exposures rarely cause HP
 • Exceptions: Japanese Summer-type
 • Unusual indoor humidity: pools, spa, humidifiers
 • Rarely with contaminated HVAC systems
Allergic Broncho-pulmonary Aspergillosis and Allergic Fungal Sinusitis- AFS

- Fungi colonize abnormal airways (bronchiectatic) or poorly draining sinuses
- The acquired fungal colonization occurs from ubiquitous environmental molds- NOT necessarily from contaminated buildings
- Ongoing allergen exposure then exacerbates allergic Sx
- Probably no increased risks from indoor mold exposures
Mold-related Infectious Diseases

• Primarily in immunocompromised hosts
 – Advanced HIV disease
 – Cancer patients on chemotherapy
 – Organ recipients on immunosuppressive Rx
 – Lymphoproliferative disorders
 – Uncontrolled DM

• No evidence that exposure to buildings with high indoor mold is causative

• Molds are acquired from normal ubiquitous sources

• Rare fungal infections that affect immunocompetent aren’t acquired from indoor air or mold-contaminated buildings (coccidio., histo. cryptococcus)
Fungal Mycotoxins

• Mycotoxins are secondary metabolites
• May confer advantage to fungus by affecting competing organisms
• Many mycotoxins used medicinally:
 – Penicillin
 – Cephalosporin
 – Cyclosporin A
 – Lovastatin
Mycotoxins and Disease
(NB: all are from ingestion)

• Aflatoxicosis: Acute hepatic failure
• Aflatoxin and hepatocellular carcinoma
• Ergotism: St Anthony’s Fire, ergotamine from *C. purpura* mold on rye
• ATA: T-2 from *Fusarium*
 – Humans who ate over-wintered moldy wheat- Russia pre- and during WW II
• Turkey X disease: aflatoxin from *Fusarium*
Production of Trichothecenes by Toxigenic Species

- Factors affecting trichothecene production
 - Strain specificity (genetics)
 - Environmental conditions of their growth
 - Temperature, humidity, growth substrate, growth of other competing microorganisms

- The presence of a toxigenic fungal species is not an accurate indicator of trichothecene production
 - A frequently misunderstood concept
Trichothecenes: Potential Exposure Sources and Pathways

- Trichothecenes in moldy building materials
 - Nanogram quantities reported on surfaces and in bulk samples
 - Trichothecenes have not been quantified in indoor air in epidemiological studies of building-related illness

- Risks from indoor mold contamination:
 - If repeatedly eat moldy building materials
 - Or repeatedly eat large amounts of dust from moldy buildings
Mold-related Mycotoxic Diseases: ODTS

- ODTS: Organic Dust Toxic Syndrome: Silo unloader’s disease, aka “grain fever”
- Exposures to fungi, bacteria, and organic debris with associated endotoxins, glucans, and mycotoxins
- “Thick airborne dust...fog...impossible to see across the room”
- Total microorganism counts have ranged from 10^5-10^9 per cubic meter of air to 10^9-10^{10} spores per cubic meter
- Represents extreme conditions not encountered in the indoor home, school, or office environment.
Mold-related Mycotoxic Diseases: Recent Scientific Evidence for ODTS

Indoor Mold, Toxigenic Fungi, and *Stachybotrys chartarum*: Infectious Disease Perspective
D. M. Kuhn1,2,3 and M. A. Ghannoum2,3*
CLINICAL MICROBIOLOGY REVIEWS, Vol. 16, No. 1; Jan. 2003, p. 144–172

• Underscored the difficulty measuring mold spores and mycotoxins
• No control homes or buildings are ever measured
• Most studies have *S. chartarum* in building materials as evidence for occupant airborne exposures
• Studies alleging health effects from molds largely are subjective questionnaires, no actual physical exam findings
• Smokers under-reported their smoking effects on children
Indoor Mold, Toxigenic Fungi, and *Stachybotrys chartarum*: Infectious Disease Perspective
D. M. Kuhn1,2,3 and M. A. Ghannoum2,3*
CLINICAL MICROBIOLOGY REVIEWS, Vol. 16, No. 1; Jan. 2003, p. 144–172

• Schools closed due to water damage and mold growth usually had lower airborne mold spore counts than in the students’ homes

• Conclusions:
 – No evidence of significant human health effects from mycotoxins in indoor environment
 – there is no well-substantiated evidence linking the presence of *Stachybotrys* to health concerns elaborated in the scientific and lay press.
Comprehensive Reviews of Scientific Evidence of Mycotoxins causing SBS
Comprehensive Reviews of Scientific Evidence of Mycotoxins causing SBS/BRI

- **Page & Trout A/JHAJ 2001:**
 - Reviewed 13 articles alleging mycotoxin exposure as cause of BRI/SBS
 - Concluded: no causal relationship

- **Fung & Hughson 9th Intl Conf IAQ July 2002**
 - Reviewed all literature 1966-2002
 - Toxicity from inhaled mycotoxins not established
 - Allergy, irritation, URI Sx increased prevalence

- **Bardana EJ Immun All Clin N Am 2003**
 - Comprehensive review of literature of mold and health
 - No evidence of mycotoxic cause of BRI/SBS
Review of Scientific Evidence of Mycotoxins causing SBS/BRI

 - Comprehensive review of mold and health
 - Mold-related Sx: irritation, allergy
 - Mycotoxic cause of BRI/SBS never proven in literature

- Terr AI; *Ann Aller Immun* 2001
 - BRI/SBS from inhalation of *Stachybotrys* spores not supported by literature

- Assouline-Dayan et al; *J Asthma* 2002
 - Mold exposure cause mucosal irritation
 - No long-term effects
 - No evidence for non-mucosal pathology
Review of Scientific Evidence of Mycotoxins causing SBS/BRI

• Terr AI. Med Mycol. 2009
 – Moulds responsible for infection, allergy, and toxicity.
 – Other conditions attributed to indoor airborne mycotoxin are unproven.

- Toxicological and exposure data for 15 MVOCs most often analyzed and reported WDB
- MVOC exposure can cause eye and upper-airway irritation.
- However, in exposure studies, symptoms don’t appear until MVOC concentrations are several orders of magnitude higher than those measured indoors
 - single MVOC levels in indoor environments have ranged from a few ng/m³ up to 1 mg/m³.
- This is also supported by dose-dependent sensory-irritation response, as determined by ASTM mouse bioassay.
- Toxicological database is poor even for the 15 examined MVOCs.
Barbeau DN, Grimsley LF, White LE, El-Dahr JM, Lichtveld M. Mold exposure and health effects following hurricanes Katrina and Rita. *Annu Rev Public Health.* 2010 Apr 21;31:165-78

- Flooding after Hurricanes Katrina and Rita created conditions ideal for indoor mold growth
- High levels of indoor and outdoor molds in the months following the hurricanes were found.
 - Homes with greater flood damage, esp. with >3 feet of indoor flooding, had higher levels of mold compared to those without flooding.
 - Water intrusion through roof was also associated with mold growth.
- No increase in the occurrence of adverse health outcomes has been observed in published reports to date.
Scientific Evidence of Mycotoxins causing SBS: Conclusion

• Scientific evidence is lacking
• Disease defined as presence of occupant symptoms, i.e., no objective findings or tests
 – In fact, most studies alleging SBS effects often consider increased #’s of subjective vague complaints as having more “disease”
• Studies uniformly lack a control non-complaint building
• Almost all lack control non-symptomatic subjects from same buildings
• Litigation seems to be fueling the debate
Scientific Organizations with Mold Statements

- Five major scientific / medical organizations reviewed evidence on health effects of indoor mold
- All statements conclude that exposure to mold in indoor environments is:
 - Known to exacerbate allergies
 - Not known to cause infection
 - Not known to cause toxic responses
IOM Report
National Academy Of Science

• Institute of Medicine report: *Damp Indoor Spaces and Health* (2004)
• Concluded that damp conditions contributed risk of respiratory symptoms independent of mold growth
• Did not support “toxic mold” hypothesis
AAAII Position Statement

• State-of-the-art review of known mold-related illnesses:
 – asthma, allergic rhinitis, allergic bronchopulmonary aspergillosis, sinusitis, and hypersensitivity pneumonitis.

• Purported mold-related illnesses occurrence of mold-related toxicity (mycotoxicosis) from exposure to inhaled mycotoxins in non-occupational settings is not supported by the current data, and its occurrence is improbable.

• Exposure to molds and their products does not induce a state of immune dysregulation (eg, immunodeficiency or autoimmunity).

• The practice of performing large numbers of nonspecific immune-based tests as an indication of mold exposure or mold-related illness is not evidence based and is to be discouraged.
2009 WHO guidelines for indoor air quality: dampness and mould

- Comprehensive review of the scientific evidence on health problems associated with building moisture and biological agents.
- Epidemiological evidence occupants of damp or mouldy buildings are at increased risk of respiratory symptoms, respiratory infections and exacerbation of asthma.
- No evidence that nervous system symptoms are caused by mold exposures or that damp buildings have levels of mycotoxins that would cause disease.
- There data showing that autoimmune responses are caused by microorganisms or microbial substances found in damp buildings.
- Remediation of dampness can reduce adverse health outcomes.
ACOEM Position Statement

• Adverse Human Health Effects Associated with Molds in the Indoor Environment- 2/24/2011
 – Update of 2002 Mold Statement
• Indoor mold exposures can be a cause of certain allergic and hypersensitivity reactions.
• A causal relationship has not been established between building-related symptoms and indoor mold exposures
• Delivery by the inhalation route of a toxic dose of mycotoxins in the indoor environment is highly unlikely, even for the most vulnerable subpopulations
• Current scientific evidence does not support the existence of a causal relationship between inhaled mycotoxins in home, school, or office environments and adverse human health effects
Conclusions

Five learned organizations basically conclude the same thing:
Indoor mold exposures are associated with allergy, asthma exacerbations, Hypersensitivity reactions But not with neurotoxic diseases
Information Resources for Health Professionals and Consumers

 – Health effects, clean-up, indoor air quality regulations, schools and mold

• CDC: http://www.cdc.gov/mold/default.htm
 – Fact sheets, health effects, mold clean-up guidelines

• Most state health departments