22. Designer benzodiazepines etizolam and flubromazolam detected in patients with suspected opioid overdose

Adrienne Hughes*, Robert Hendrickson*, Kim Aldy, Alison Meyn, Sharan Campleman, Stephanie Abston, Alex Krotulski, Barry Logan, Alexandra Amaducci, Anthony Pizon, Paul Wax, Jeffrey Brent, and Alex Manini, On behalf of the ToxIC Fentalog Study Group

*Oregon Health and Science University; †American College of Medical Toxicology; ‡Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation; †NMS Labs; ‡Lehigh Valley Health Network; †University of Pittsburgh School of Medicine; †University of Colorado School of Medicine; †Icahn School of Medicine at Mount Sinai

Background: A growing number of novel psychoactive substances, including designer benzodiazepines, have become available on the illicit drug market and over the internet. Etizolam, a thienodiazepine, and flubromazolam, a triazolobenzodiazepine, have recently emerged on the illicit drug market in Europe and the United States in recent years. Reports of non-medical use and detection of etizolam and flubromazolam drugs in counterfeit medications appear to be rising, as is their identification in drug-related deaths, often in combination with opioids and other CNS depressants.

Methods: This case series includes adult ED patients who presented to emergency departments within the American College of Medical Toxicology’s Toxicology Investigators Consortium (ToxIC) fentalog study group after a suspected opioid overdose. Toxicological comprehensive testing was performed on residual blood samples via liquid chromatography quadrupole time-offlight mass spectrometry for the presence of over 900 psychoactive substances and their metabolites. Cases with etizolam and flubromazolam identified in biologic samples were reviewed.

Results: Between 10/6/20 and 3/9/21, 141 biological samples of patients suspected of opioid overdose were analyzed from 5 clinical sites encompassing 4 states (Missouri, Oregon, New York, and Pennsylvania). The median age of subjects was 41.9 years (range: 25-69); 80% were male. Etizolam was detected in 10 samples (7%) and flubromazolam in 2 samples (1.4%). Etizolam was confirmed in all states except Missouri and flubromazolam was detected only in Oregon. Oregon had the most exposures overall (N = 5).

In all 10 cases with confirmed presence of etizolam, at least 1 opioid was also identified in biological samples (methadone (n = 6), Fentanyl (n = 3), heroin (n = 2), buprenorphine (n = 1). Flubromazolam, was detected in 2 samples, both from Oregon. Methamphetamine (n = 4) and amphetamine (n = 3) were also commonly detected. The primary reason for the exposure was intentional in all 10 cases, the most common being misuse/abuse (n = 5). No patients received flumazenil. Naloxone was administered in 7 cases. The most common indications for naloxone administration were depressed level of consciousness (n = 5), respiratory depression clinically (n = 3), decreased oxygenation (n = 1), and decreased expired carbon dioxide (n = 1). In 5 cases, the response to naloxone was known: No response (n = 1), increased respiratory rate (n = 2), improved level of consciousness (n = 4), iatrogenic withdrawal precipitated (n = 1). In 3 cases, 3 or more doses of naloxone was administered. One patient was intubated for acute respiratory failure non-responsive to naloxone. The primary reason for the exposure was intentional in all 10 cases, the most common being misuse/abuse (n = 5). Nine patients were discharged without sequelae and 1 left against medical advice. There were no deaths.
Conclusion: Combined designer benzodiazepine and illicit opioid use can result in synergistic toxicity that may increase the risk of an overdose and/or death. In these preliminary data, etizolam was always identified along with at least 1 opioid, suggesting either addition to the opioid supply or concomitant use.